skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghannam, Khaled"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue. 
    more » « less
  2. We investigate the intermittent dynamics of momentum transport and its underlying time scales in the near-wall region of the neutrally stratified atmospheric boundary layer in the presence of a vegetation canopy. This is achieved through an empirical analysis of the persistence time scales (periods between successive zero-crossings) of momentum flux events, and their connection to the ejection–sweep cycle. Using high-frequency measurements from the GoAmazon campaign, spanning multiple heights within and above a dense canopy, the analysis suggests that, when the persistence time scales ( $$t_p$$ ) of momentum flux events from four different quadrants are separately normalized by $$\varGamma _{w}$$ (integral time scale of the vertical velocity), their distributions $$P(t_p/\varGamma _{w})$$ remain height-invariant. This result points to a persistent memory imposed by canopy-induced coherent structures, and to their role as an efficient momentum-transporting mechanism between the canopy airspace and the region immediately above. Moreover, $$P(t_p/\varGamma _{w})$$ exhibits a power-law scaling at times $$t_{p}<\varGamma _{w}$$ , with an exponential tail appearing for $$t_{p} \geq \varGamma _{w}$$ . By separating the flux events based on $$t_p$$ , we discover that around 80 % of the momentum is transported through the long-lived events ( $$t_{p} \geq \varGamma _{w}$$ ) at heights immediately above the canopy, while the short-lived ones ( $$t_{p} < \varGamma _{w}$$ ) only contribute marginally ( $$\approx 20\,\%$$ ). To explain the role of instantaneous flux amplitudes in momentum transport, we compare the measurements with newly developed surrogate data and establish that the range of time scales involved with amplitude variations in the fluxes tends to increase as one transitions from within to above the canopy. 
    more » « less
  3. Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements. 
    more » « less
  4. Abstract While yearly budgets of CO2flux (Fc) and evapotranspiration (ET) above vegetation can be readily obtained from eddy‐covariance measurements, the separate quantification of their soil (respiration and evaporation) and canopy (photosynthesis and transpiration) components remains an elusive yet critical research objective. In this work, we investigate four methods to partition observed total fluxes into soil and plant sources: two new and two existing approaches that are based solely on analysis of conventional high frequency eddy‐covariance (EC) data. The physical validity of the assumptions of all four methods, as well as their performance under different scenarios, are tested with the aid of large‐eddy simulations, which are used to replicate eddy‐covariance field experiments. Our results indicate that canopies with large, exposed soil patches increase the mixing and correlation of scalars; this negatively impacts the performance of the partitioning methods, all of which require some degree of uncorrelatedness between CO2and water vapor. In addition, best performances for all partitioning methods were found when all four flux components are non‐negligible, and measurements are collected close to the canopy top. Methods relying on the water‐use efficiency (W) perform better whenWis known a priori, but are shown to be very sensitive to uncertainties in this input variable especially when canopy fluxes dominate. We conclude by showing how the correlation coefficient between CO2and water vapor can be used to infer the reliability of differentWparameterizations. 
    more » « less
  5. Abstract Turbulent mixing of scalars within canopies is investigated using a flume experiment with canopy‐like rods of heighthmounted to the channel bed. The data comprised a time sequence of high‐resolution images of a dye recorded in a plane parallel to the bed atz/h= 0.2. Image processing shows that von Kármán wakes shed by canopy drag and downward turbulent transport from upper canopy layers impose distinct scaling regimes on the scalar spectrum. Measures from information theory are then used to explore the dominant directionality of the interaction between small and large scales underlying these two spectral regimes, showing that the arrival of sweeps from aloft establishes an inertial‐range spectrum with forward “information” cascade. In contrast, wake growth with downstream distance leads to persistent upscale transfer (inverse cascade) of scalar variance, which hints at their nondiffusive character and the significance of the stem diameter as an active length scale in canopy turbulence. 
    more » « less